Accumulation of non-outer segment proteins in the outer segment underlies photoreceptor degeneration in Bardet-Biedl syndrome.
نویسندگان
چکیده
Compartmentalization and polarized protein trafficking are essential for many cellular functions. The photoreceptor outer segment (OS) is a sensory compartment specialized for phototransduction, and it shares many features with primary cilia. As expected, mutations disrupting protein trafficking to cilia often disrupt protein trafficking to the OS and cause photoreceptor degeneration. Bardet-Biedl syndrome (BBS) is one of the ciliopathies associated with defective ciliary trafficking and photoreceptor degeneration. However, precise roles of BBS proteins in photoreceptor cells and the underlying mechanisms of photoreceptor degeneration in BBS are not well understood. Here, we show that accumulation of non-OS proteins in the OS underlies photoreceptor degeneration in BBS. Using a newly developed BBS mouse model [Leucine zipper transcription factor-like 1 (Lztfl1)/Bbs17 mutant], isolated OSs, and quantitative proteomics, we determined 138 proteins that are enriched more than threefold in BBS mutant OS. In contrast, only eight proteins showed a more than threefold reduction. We found striking accumulation of Stx3 and Stxbp1/Munc18-1 and loss of polarized localization of Prom1 within the Lztfl1 and Bbs1 mutant OS. Ultrastructural analysis revealed that large vesicles are formed in the BBS OS, disrupting the lamellar structure of the OS. Our findings suggest that accumulation (and consequent sequestration) of non-OS proteins in the OS is likely the primary cause of photoreceptor degeneration in BBS. Our data also suggest that a major function of BBS proteins in photoreceptors is to transport proteins from the OS to the cell body or to prevent entry of non-OS proteins into the OS.
منابع مشابه
BBSome function is required for both the morphogenesis and maintenance of the photoreceptor outer segment
Genetic mutations disrupting the structure and function of primary cilia cause various inherited retinal diseases in humans. Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, pleiotropic ciliopathy characterized by retinal degeneration, obesity, postaxial polydactyly, intellectual disability, and genital and renal abnormalities. To gain insight into the mechanisms of retinal degenerat...
متن کاملImpaired photoreceptor protein transport and synaptic transmission in a mouse model of Bardet–Biedl syndrome
Bardet-Biedl syndrome (BBS) is an oligogenic syndrome whose manifestations include retinal degeneration, renal abnormalities, obesity and polydactylia. Evidence suggests that the main etiopathophysiology of this syndrome is impaired intraflagellar transport (IFT). In this study, we study the Bbs4-null mouse and investigate photoreceptor structure and function after loss of this gene. We find th...
متن کاملEvidence from normal and degenerating photoreceptors that two outer segment integral membrane proteins have separate transport pathways.
Detachment of the neural retina from the retinal pigment epithelium induces photoreceptor degeneration. We studied the effects of this degeneration on the localization of two photoreceptor outer segment-specific integral membrane proteins, opsin and peripherin/rds, in rod photoreceptors. Results from laser scanning confocal microscopic and electron microscopic immunolocalization demonstrate tha...
متن کاملSNAREs Interact with Retinal Degeneration Slow and Rod Outer Segment Membrane Protein-1 during Conventional and Unconventional Outer Segment Targeting
Mutations in the photoreceptor protein peripherin-2 (also known as RDS) cause severe retinal degeneration. RDS and its homolog ROM-1 (rod outer segment protein 1) are synthesized in the inner segment and then trafficked into the outer segment where they function in tetramers and covalently linked larger complexes. Our goal is to identify binding partners of RDS and ROM-1 that may be involved in...
متن کاملRetinal degeneration and failure of photoreceptor outer segment formation in mice with targeted deletion of the Joubert syndrome gene, Ahi1.
Vertebrate photoreceptors have a modified cilium composed of a basal body, axoneme and outer segment. The outer segment includes stacked membrane discs, containing opsin and the signal transduction apparatus mediating phototransduction. In photoreceptors, two distinct classes of vesicles are trafficked. Synaptic vesicles are transported down the axon to the synapse, whereas opsin-containing ves...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 32 شماره
صفحات -
تاریخ انتشار 2015